
Preparing CMS for the HL-LHC
and the future of computing

Allison Reinsvold Hall
Research Associate, Fermilab

BNL Particle Physics Seminar

November 2020A. Reinsvold Hall | Particle Physics Seminar 1

Outline

November 2020A. Reinsvold Hall | Particle Physics Seminar 2

LHC and HL-LHC
computing challenges

Reconstruction
software: mkFit
parallel tracking

Analysis software:
Columnar analysis

with Coffea

Compact Muon Solenoid (CMS)

November 2020A. Reinsvold Hall | Particle Physics Seminar 3

CMS

CMS computing
• 135 M detector channels
• 200 PB of data and simulation from Run 2
• Worldwide computing grid of >200k CPU cores
• 75 billion events processed per year

• Monte Carlo simulation
• (Re)processing data events

November 2020A. Reinsvold Hall | Particle Physics Seminar 4

Data

Monte Carlo
(MC) simulation

RAW
Data

Reconstruction
algorithms

Analysis
software

RECO
Data

Physics
results

Reconstruction algorithms
Reconstruction: process of identifying particles and their properties (pT, η, φ, etc)
by their signatures in the different subdetectors of CMS

November 2020A. Reinsvold Hall | Particle Physics Seminar 5

1. Reconstruct signatures
in each subdetector

Examples: tracks,
calorimeter clusters

2. Reconstruct particles
using the complete event
information

Example: Reconstruct
muons from a track in
the silicon tracker and
hits in the outer muon
system

Analysis workflow

November 2020A. Reinsvold Hall | Particle Physics Seminar 6

Centrally produced data sets of recorded and simulated events
• Several tiers, each with reduced content
• RECO (Mb/ev) →AOD (500 kb/ev) →MiniAOD (50 kb/ev)

Group ntuples or centrally produced NanoAOD (5 kb/ev)

Ntupling (on grid)
Producing slimmed ROOT files with only the
variables needed for your specific analysis

1–2 weeks,
few times
per year

Analysis code (locally or in batch)
Define signal and control regions, apply scale
factors and corrections, estimate
backgrounds, perform statistical analysis

Several
times per
day

Final plots and tables

Physics results

November 2020A. Reinsvold Hall | Particle Physics Seminar 7

CMS Publications by physics topic

CMS recently published its 1000th physics paper!

LHC Timeline
• Integrated luminosity ℒ = 160 fb-1 in Run 2; expected to reach ℒ > 3000 fb-1 during

High-Luminosity LHC (HL-LHC)
→ Many exciting physics opportunities ahead!

November 2020A. Reinsvold Hall | Particle Physics Seminar 8

Now: Long
Shutdown 2

(LS2)

2015 – 2018:
LHC Run 2 2027: Start of

HL-LHC operations

Good news: more physics!
• HL-LHC will allow us to probe even rarer

processes and improve precision on
standard model measurements

Big challenges: computing
• Instantaneous luminosity (collisions per

second) will go up by > 5x
• Simultaneous overlapping proton-proton

collisions (pileup, PU) will increase from
40 in Run 2 to 200 in the HL-LHC

→ Need substantial computing R&D to
enable HL-LHC physics

November 2020A. Reinsvold Hall | Particle Physics Seminar 9

HL-LHC computing
CPU requirements

Disk requirements

Assuming no R&D:

Computing R&D
• Heterogenous computing

• GPUs will likely be used in the CMS software trigger during Run 3
• CUDA versions of pixel tracking, local calorimeter reco. written by Patatrack team1

• SONIC project2 is exploring using GPUs “as-a-service”, with multiple CPUs making calls
to a GPU on an independent server

• Machine learning
• Increased use in all aspects of CMS computing
• Being explored for CMS high-granularity

calorimeter (HGCAL) reconstruction3 or
track reconstruction (Exa.Trkx project4)

• High performance computing (HPC) and
cloud resources

• Parallelization and optimization
• Use tools from data science industry
• Optimize existing algorithms to take advantage

of parallelization

November 2020A. Reinsvold Hall | Particle Physics Seminar 10

1. Patatrack [2008.13461]
2. SONIC [2007.10359] (diagram above)
3. HGCAL reconstruction [ICHEP talk]
4. Exa.Trk.X [https://exatrkx.github.io/]

https://arxiv.org/abs/2008.13461
https://arxiv.org/abs/2007.10359
https://indico.cern.ch/event/868940/contributions/3813831/attachments/2080727/3494810/jingyu-hgc-ichep-2020.pdf
https://exatrkx.github.io/

Parallelization methods
Two different forms of parallel code:
Multithreading
• Perform different tasks at the same time on

different pieces of data
• Utilizes different CPU cores or hyperthreads

Vectorization:
• SIMD operations = Single-Instruction

Multiple-Data
• Perform the same operation at the same

time in lock-step across different data
• Utilizes vector registers on the CPU

November 2020A. Reinsvold Hall | Particle Physics Seminar 11

← Vector register →

4x faster
* Showing one CPU clock cycle = shortest time

slice it takes to perform a single operation

Computing trends
• Can no longer rely on frequency

(CPU clock speed) to keep
growing exponentially —
nothing for free anymore
• Since 2005, most of the gains in

single-thread performance come
from vector operations
• But, number of logical cores is

rapidly growing
• Rewrite algorithms to take

advantage of both
multithreading and vectorization

November 2020A. Reinsvold Hall | Particle Physics Seminar 12

Outline

November 2020A. Reinsvold Hall | Particle Physics Seminar 13

LHC and HL-LHC
computing challenges

Reconstruction
software: mkFit
parallel tracking

Analysis software:
Columnar analysis

with Coffea

CMS computing

Parallelization
methods

HL-LHC timeline

Speeding up reconstruction software:
mkFit parallel track building

JINST 15 (2020) 09, arXiv:2006.00071
Project website: http://trackreco.github.io/

A. Reinsvold Hall | Particle Physics Seminar 14November 2020

https://arxiv.org/abs/2006.00071
http://trackreco.github.io/

Reconstruction algorithms
Reconstruction: process of identifying particles and their properties (pT, η, φ, etc)
by their signatures in the different subdetectors of CMS

November 2020A. Reinsvold Hall | Particle Physics Seminar 15

1. Reconstruct signatures
in each subdetector

Examples: tracks,
calorimeter clusters

2. Reconstruct particles
using the complete event
information

Example: Reconstruct
muons from a track in
the silicon tracker and
hits in the outer muon
system

Tracker
• Closest detectors to the beamline

1. Silicon pixel detector: pixel size
100μm x 150μm, 124M channels

2. Silicon strip detector: strips are
80-200μm wide, 10M channels

• “Tracking” is the process of
reconstructing charged particle
trajectories from hits in the detector

November 2020A. Reinsvold Hall | Particle Physics Seminar 16

Half endcap disks for the upgraded CMS
pixel detector, installed early 2017

Layout of pixel detector, after 2017 upgrade

Setting the stage
1. Tracking is crucial: for b-quark tagging, pT

miss, PU mitigation,
long-lived particles searches…

November 2020A. Reinsvold Hall | Particle Physics Seminar 17

Event display, CMS 2018 high PU run (PU 136)

Setting the stage
1. Tracking is crucial
2. Tracking is time-consuming

November 2020A. Reinsvold Hall | Particle Physics Seminar 18

Profile of reconstruction time in CMS Software framework, CMSSW

Setting the stage
1. Tracking is crucial
2. Tracking is time-consuming
3. Tracking times goes up

dramatically with increased pileup
• Problem of combinatorics as

occupancy increases

November 2020A. Reinsvold Hall | Particle Physics Seminar 19

Figure 1. CPU time per event
versus instantaneous luminosity,
for both full reconstruction and
the dominant tracking portion.
Simulated data with pile-up of
25 primary interactions per
event (PU25) corresponds to the
data taken during 2012, while
pile-up of 140 (PU140)
corresponds to the low end of
estimates for the HL-LHC era.

as Intels Xeon Phi and NVIDIA general-purpose graphics processing units (GPGPUs). In this
investigation we have followed a staged approach, starting with Intel Xeon and Xeon Phi Knights
Corner (KNC) architectures, an idealized detector geometry, and a series of simpler “warm-up”
exercises such as track fitting. This simplified problem domain was used to develop our tools,
techniques, and understanding of the issues scaling track finding to many cores. The warm-up
exercises let us develop useful components while also allowing the physicists to become familiar
with the computational tools and techniques, while the computational experts learned about the
problem domain. Armed with the results of those initial investigations, we are now addressing
more realistic detector geometries and event content, as well as adding new platforms. This
paper gives an overview of our progress to date and assesses the e↵ectiveness of our staged
approach.

2. Kalman Filter Tracking

Our targets for parallel processing are track reconstruction and fitting algorithms based on the
Kalman Filter [3] (KF). KF-based tracking algorithms are widely used to incorporate estimates
of multiple scattering directly into the trajectory of the particle. Other algorithms, such as
Hough Transforms and Cellular Automata [4][5], are more naturally parallelized. However,
these are not the main algorithms in use at the LHC today. The LHC experiments have an
extensive understanding of the physics performance of KF algorithms; they have proven to be
robust and perform well in the di�cult experimental environment of the LHC.

KF tracking proceeds in three main stages: seeding, building, and fitting. Seeding provides
the initial estimate of the track parameters based on a few hits in the innermost regions of the
detector; seeding is currently out of scope for our project. Track building projects the track
candidate outwards to collect additional hits, using the KF to estimate which hits represent the
most likely continuation of the track candidate. Track building is the most time consuming step,
as it requires branching to explore multiple candidate tracks per seed after finding compatible
hits on a given layer. When a complete track has been reconstructed, a final fit using the KF is
performed to provide the best estimate of the track’s parameters.

To take full advantage of parallel architectures, we need to exploit two types of parallelism:
vectorization and parallelization. Vector operations perform a single instruction on multiple data
(SIMD) at the same time, in lockstep. In tracking, branching to explore multiple candidates per

Kalman filter (KF) track building

• CMS uses a Kalman Filter algorithm for
tracking

• Demonstrated physics performance
• Robust handling of multiple scattering,

energy loss, and other material effects

Three step process:
1. Propagate the track state from layer

N-1 to layer N (prediction)
2. Search for compatible hits on layer N
3. Update the track state using the hit

parameters

November 2020A. Reinsvold Hall | Particle Physics Seminar 20

Predicted track state
Detector measurement (hit)

Updated track state

Kalman Filter Performance
• Current CMS algorithm achieves excellent

efficiency using KF track building
• Iterative approach:

• Start with easiest tracks to build, remove
associated hits, then look for more difficult
tracks

• Reduces combinatorics for later iterations
mkFit project:

A. Maintain excellent physics performance
B. Speed up track building by taking advantage
of parallel architectures

• Focus on initial iteration, which is responsible for
building most prompt (ie, not displaced) tracks

• Aim for deployment in CMSSW in Run 3

November 2020A. Reinsvold Hall | Particle Physics Seminar 21

Sim. track prod. vertex radius (cm)
0 10 20 30 40 50 60

Tr
ac

ki
ng

 e
ffi

ci
en

cy

0

0.2

0.4

0.6

0.8

1

1.2
=35)ñPUá event tracks (tt

 > 0.9 GeV,
T

p
| < 2.5h|

Initial
+HighPtTriplet
+LowPtQuad
+LowPtTriplet
+DetachedQuad
+DetachedTriplet
+MixedTriplet
+PixelLess
+TobTec
+JetCore
+Muon inside-out
+Muon outside-in

 13 TeVCMS Simulation preliminary

Challenges of KF track building

• KF track building is not straightforward to
parallelize

• In track building, don’t know which hits belong
to which track

• Start with a seed track
• On each layer, could find 0, 1, 2+ hits

compatible with the track
• Vectorization is hard: Requires branching to

explore many possible track candidates
• Multithreading is hard: tracks differ in number

of hits and events differ in number of tracks

November 2020A. Reinsvold Hall | Particle Physics Seminar 22

How we do it
• Multithreading at nested levels using TBB

- parallel for: N events in flight
- parallel for: 5 regions in η in each event

- parallel for: batches of 16 or 32 seeds per batch
• Vectorized processing of individual track candidates using both compiler vectorization

and the custom-built Matriplex library

November 2020A. Reinsvold Hall | Particle Physics Seminar 23

Matriplex
• Fill each vector unit with

the same element from n
different matrices and
operate on each matrix in
sync

• For example, the 6x6
covariance matrices for
each track

Geometry in mkFit
• Unlike CMSSW, choose not to deal

with detector modules, only layers
• Makes algorithm faster, more

lightweight
• Geometry implemented as a plugin:

core algorithm is entirely separate
from detector geometry

November 2020A. Reinsvold Hall | Particle Physics Seminar 24

Actual geometry used by MkFit
Layer centroids

Layer size

CMS-2017 Geometry
8 Mario Masciovecchio (UCSD), 7 November 2018

•  Top:
o  Layer centroids

•  Bottom:
o  Layer size
o  Actual geometry

used by mkFit

•  Geometry is implemented as a plugin

CMS-2017 Geometry
8 Mario Masciovecchio (UCSD), 7 November 2018

•  Top:
o  Layer centroids

•  Bottom:
o  Layer size
o  Actual geometry

used by mkFit

•  Geometry is implemented as a plugin

CMS endcap disk

Efficiency
• Efficiency: fraction of simulated tracks that are matched to a reconstructed track
• mkFit is at least as efficient as current CMS algorithm across pT and η
• Tested on 𝑡 ̅𝑡 events with average pileup of 50, CMS tracker geometry from 2018

November 2020A. Reinsvold Hall | Particle Physics Seminar 25

Fake rate and duplicate rate
• Fake rate: fraction of reco tracks that are not matched to a sim track
• Duplicate rate: fraction of sim tracks that are matched to >1 reco track
• Small but manageable increase in fake rate and duplicate rate

• Further optimizations ongoing

November 2020A. Reinsvold Hall | Particle Physics Seminar 26

Amdahl’s Law

S = measured speedup

p = parallelized fraction

(1 – p) = remaining serial fraction
R = ratio of available to original
resources (here, Matriplex width)

Vectorization performance
• Vectorization performance measured by artificially restricting the Matriplex

width (how many matrices we calculate simultaneously)
• Indicates close to 70% of code is successfully vectorized

November 2020A. Reinsvold Hall | Particle Physics Seminar 27

0 5 10 15
Matriplex Width

0

1

2

3

Sp
ee

du
p

of
 T

ra
ck

 B
ui

ld
in

g

ideal scaling

Amdahl's Law (p=69%)

SKL-SP

KNL

Vectorization Scaling

* mkFit run on a single-thread, track building times only

𝑆 =
1

1 − 𝑝 +)𝑝 𝑅

Multithreading performance
• Processing multiple events at a time allows the latencies between events to be hidden
• Maximum speedup of 35x achieved

November 2020A. Reinsvold Hall | Particle Physics Seminar 28
* Matriplex width set to 16, full processing time including I/O and setup

10 20 30 40 50 60
Number of Threads

0

5

10

15

20

25

30

35

40

Av
er

ag
e

Sp
ee

du
p

pe
r E

ve
nt

1 Events
2 Events
4 Events
8 Events
16 Events
32 Events
64 Events
Ideal Scaling

Concurrent Event Scaling on SKL-SP

mkFit results: timing
• Can also run mkFit within CMSSW as

an external package
• mkFit track building > 6x faster than

CMSSW, including all overheads
• Track building no longer dominates
reconstruction time
• Results used a single thread: even larger

speedups if multi-threaded

• Ongoing work to integrate with
CMSSW for use in Run 3

November 2020A. Reinsvold Hall | Particle Physics Seminar 29

* Measured on Intel SKL-SP, using
simulated 𝑡 ̅𝑡 PU 50 events
* mkFit compiled with AVX-512, icc
* CMSSW compiled with SSE3, gcc

Outline

November 2020A. Reinsvold Hall | Particle Physics Seminar 30

LHC and HL-LHC
computing challenges

Reconstruction
software: mkFit
parallel tracking

Analysis software:
Columnar analysis

with Coffea

CMS computing

Parallelization
methods

HL-LHC timeline

Track building

mkFit parallel KF
algorithm

mkFit results

Columnar Object Framework
For Effective Analysis (Coffea)

Documentation: https://coffeateam.github.io/coffea

A. Reinsvold Hall | Particle Physics Seminar 31November 2020

https://coffeateam.github.io/coffea

Analysis workflow

November 2020A. Reinsvold Hall | Particle Physics Seminar 32

Centrally produced data sets of recorded and simulated events
• Several tiers, each with reduced content
• RECO (Mb/ev) →AOD (500 kb/ev) →MiniAOD (50 kb/ev)

Group ntuples or centrally produced NanoAOD (5 kb/ev)

Ntupling (on grid)
Producing slimmed ROOT files with only the
variables needed for your specific analysis

1–2 weeks,
few times
per year

Analysis code (locally or in batch)
Define signal and control regions, apply scale
factors and corrections, estimate
backgrounds, perform statistical analysis

Several
times per
day

Final plots and tables

Analysis
• Final step in CMS computing is the analysis software

• More than 100 analysis frameworks in CMS
• Wide variation in efficiency, ease of use, computing languages

• Each group has their own ntuples
• Inefficient use of CPU (to make the ntuples), disk resources (to store the ntuples),

and personpower (for the manual bookkeeping of jobs, files, and datasets)
• Partially solved by NanoAOD: centrally produced, containing all variables needed by

approximately half of CMS analyses

November 2020A. Reinsvold Hall | Particle Physics Seminar 33

Data

Monte Carlo
(MC) simulation

RAW
Data

Reconstruction
algorithms

Analysis
software

RECO
Data

Physics
results

Centrally managed Per analysis group

Motivation for Coffea
• Current disorganized analysis approach is not sustainable for the HL-LHC
• Need to minimize computing time, disk space, and physicist effort
• Coffea approach: move from ROOT-based tools to industry-standard techniques

• Let the physicists worry about physics rather than manual setup and bookkeeping

November 2020A. Reinsvold Hall | Particle Physics Seminar 34

Moving towards columnar analysis
• Event loop analysis:

• Load relevant values for a specific event
• Evaluate several expressions
• Store derived values
• Repeat (explicit outer loop)

• Columnar analysis:
• Load relevant values for many events into

numpy arrays
• Evaluate several array programming

expressions
• Operations which act on an

entire array at once
• Implicit inner loops

• Store derived values
• Utilizing scientific python: numpy,

matplotlib

November 2020A. Reinsvold Hall | Particle Physics Seminar 35

12

From K. Pedro

Event loop Columnar

Strengths of columnar analysis
• Inherently vectorizable with efficient memory access

• Takes much more effort to do the same using
event loop analysis

• Array programming expressions in numpy are compiled C++
• Much faster than a python for loop, avoids interpreter

• Minimizes disk space
• Fast enough that there is no need to stage out

intermediate steps
• Work in progress: ability to add new columns to

existing datasets in the database
• For example, if you want to add displaced muons that

are not stored by default in NanoAOD
• Ease of use: no need to write nested loops, filters by hand
• Easier to Google, prepares students for future careers

• Students learn standard data science techniques

November 2020A. Reinsvold Hall | Particle Physics Seminar 36

What is Coffea?
• Physicist-friendly tools for column-based analysis
• Implements typical recipes needed to operate on NanoAOD-like ntuples
• Uses scientific python ecosystem:

• numpy, numba, scipy, matplotlib
• Uproot: converts ROOT files into numpy arrays
• Awkward-array: array programming primitives to handle “Jagged Arrays”

November 2020A. Reinsvold Hall | Particle Physics Seminar 37

Coffea framework

Coffea provides:
• Support for several “column-delivery”

mechanisms
• Choice of mechanism should be

transparent to the user

November 2020A. Reinsvold Hall | Particle Physics Seminar 38

Coffea provides:
• Histogramming tools based on matplotlib
• Output to ROOT histograms if desired
• Lookup tools for weights and scale factors

Back-end
Data delivery from ROOT ntuples

into columns (awkward arrays)

Front-end
Control regions, systematics,

corrections, histograms

* Open-source software tools for distributed parallel computing

*

**

Analysis framework
• Coffea processor defines the analysis selections, weights, and output

histograms (ie, the front-end analysis code)
• Input: dataframe of awkward arrays
• Output: histograms, counters, small arrays

• Coffea executor handles the interaction with the back-end scale out
mechanism, such as communicating with HTCondor, a Spark cluster, or Dask

• Once defined, your processor can be passed to different executors with a
single line change

November 2020A. Reinsvold Hall | Particle Physics Seminar 39

Front-end code
• Idea of what it looks like in a real analysis

• Python allows very flexible interface, under-the-hood data structure is columnar
• One line of code to define analysis objects and which columns you care about

• One line of code to select good electrons from all events - no explicit for loop
over electrons!

• One line of code to define events passing signal region requirements - no explicit for loop
over events!

November 2020A. Reinsvold Hall | Particle Physics Seminar 40

clean_eles = eles[(eles.pt > 7) & (abs(eles.eta) < 2.4) & ((eles.id&2) != 0)]

eles = JaggedCandidateArray(events.nElectron,
‘pt’ : events.Electron.pt,
‘eta’: events.Electron.eta,
‘id’ : events.Electron.cutBased)

selections['signal'] = pass_trigger & (clean_jets.counts == 1) & (met > 200) &
(clean_eles.counts==0) & (clean_muons.counts==0)

Backend: Coffea farms
• Dedicated Analysis Facility (AF) could provide the people, services, software, and

hardware to run Coffea at scale with multiple users
• Multiple facilities in development
• Coffea Casa plans to invite alpha testers by the end of the year

November 2020A. Reinsvold Hall | Particle Physics Seminar 41

*Oksanna Shadura, IRIS-HEP workshop, Oct 27

https://indico.cern.ch/event/960587/contributions/4070335/attachments/2130432/3587698/Analysis%20on%20LHC-Managed%20Facilities%20Coffea-Casa.pdf

Coffea status and plans
• Coffea is being used or explored for > 10 analyses in CMS

• Including many people not on the development team
• Also being used upstream by some of the Physics Object Groups to derive

corrections and scale factors
• Interest from other experiments such as DUNE

• Coffea is (relatively) easy to learn
• Especially for those with no previous event-loop or ROOT experience
• Code is easy to read, even for people used to C++ event loops

• Several Coffea farms under development
• USCMS operations program is interested in supporting an analysis facility

• New collaborators/analyzers are welcome
• Documentation: https://coffeateam.github.io/coffea

November 2020A. Reinsvold Hall | Particle Physics Seminar 42

https://coffeateam.github.io/coffea

Outline

November 2020A. Reinsvold Hall | Particle Physics Seminar 43

LHC and HL-LHC
computing challenges

Reconstruction
software: mkFit
parallel tracking

Analysis software:
Columnar analysis

with Coffea

CMS computing

Parallelization
methods

HL-LHC timeline

Track building

mkFit parallel KF
algorithm

mkFit results

Columnar analysis

Coffea framework
and front-end code

Analysis facilities

Conclusions
• CMS relies on sophisticated computing to achieve physics goals

• HL-LHC presents significant computing challenges
• Bridge the gap through

increased use of parallelization
and optimized algorithms

• mkFit speeds up track building
by 6x

• Coffea brings data science
techniques to HEP data analysis

November 2020A. Reinsvold Hall | Particle Physics Seminar 44

Data

Monte Carlo (MC)
simulation

Reconstruction
algorithms

Analysis
software

Physics
results

Figure 1. CPU time per event
versus instantaneous luminosity,
for both full reconstruction and
the dominant tracking portion.
Simulated data with pile-up of
25 primary interactions per
event (PU25) corresponds to the
data taken during 2012, while
pile-up of 140 (PU140)
corresponds to the low end of
estimates for the HL-LHC era.

as Intels Xeon Phi and NVIDIA general-purpose graphics processing units (GPGPUs). In this
investigation we have followed a staged approach, starting with Intel Xeon and Xeon Phi Knights
Corner (KNC) architectures, an idealized detector geometry, and a series of simpler “warm-up”
exercises such as track fitting. This simplified problem domain was used to develop our tools,
techniques, and understanding of the issues scaling track finding to many cores. The warm-up
exercises let us develop useful components while also allowing the physicists to become familiar
with the computational tools and techniques, while the computational experts learned about the
problem domain. Armed with the results of those initial investigations, we are now addressing
more realistic detector geometries and event content, as well as adding new platforms. This
paper gives an overview of our progress to date and assesses the e↵ectiveness of our staged
approach.

2. Kalman Filter Tracking

Our targets for parallel processing are track reconstruction and fitting algorithms based on the
Kalman Filter [3] (KF). KF-based tracking algorithms are widely used to incorporate estimates
of multiple scattering directly into the trajectory of the particle. Other algorithms, such as
Hough Transforms and Cellular Automata [4][5], are more naturally parallelized. However,
these are not the main algorithms in use at the LHC today. The LHC experiments have an
extensive understanding of the physics performance of KF algorithms; they have proven to be
robust and perform well in the di�cult experimental environment of the LHC.

KF tracking proceeds in three main stages: seeding, building, and fitting. Seeding provides
the initial estimate of the track parameters based on a few hits in the innermost regions of the
detector; seeding is currently out of scope for our project. Track building projects the track
candidate outwards to collect additional hits, using the KF to estimate which hits represent the
most likely continuation of the track candidate. Track building is the most time consuming step,
as it requires branching to explore multiple candidate tracks per seed after finding compatible
hits on a given layer. When a complete track has been reconstructed, a final fit using the KF is
performed to provide the best estimate of the track’s parameters.

To take full advantage of parallel architectures, we need to exploit two types of parallelism:
vectorization and parallelization. Vector operations perform a single instruction on multiple data
(SIMD) at the same time, in lockstep. In tracking, branching to explore multiple candidates per

Thank you!

A. Reinsvold Hall | Particle Physics Seminar 45November 2020

Application to other experiments
mkFit
- mkFit in theory could be used for

ATLAS
- Geometry is a plugin, factored out of

main code
- In practice, a lot of work comes down

to interfacing with the peculiarities of
the experiment’s software framework

- Same optimization/parallelization
approach can be applied to other
experiments

- Rewrote hit finding algorithm for
LArTPC reconstruction; used in
production for Icarus, 7x speedup

- Exploring FFT algorithms
- https://computing.fnal.gov/hepreco-

scidac4

November 2020A. Reinsvold Hall | Particle Physics Seminar 46

Coffea
- Working with ATLAS developers to

expand its use
- Not used by ATLAS analysis groups

yet, mostly due to issues with file
format

- Many neutrino experiments already
use numpy + Pandas DataFrames for
analysis

- Coffea adds convenient histograms,
lookup tools for uncertainties, ability
to handle “awkward data”

Pokemon or Big Data?
• https://pixelastic.github.io/pokemonorbigdata/

November 2020A. Reinsvold Hall | Particle Physics Seminar 47

ATLAS computing during HL-LHC

November 2020A. Reinsvold Hall | Particle Physics Seminar 48

Year

2020 2022 2024 2026 2028 2030 2032 2034

D
is

k
St

or
ag

e
[E

B]

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5 =55)µRun 3 (=88-140)µRun 4 (=165-200)µRun 5 (

2020 Computing Model - Disk
Baseline
Conservative R&D
Aggressive R&D
Sustained budget model
(+10% +20% capacity/year)

LHCC common scenario
=200)µ(Conservative R&D,

ATLAS Preliminary

Year

2020 2022 2024 2026 2028 2030 2032 2034

ye
ar

s]
×

An
nu

al
 C

PU
 C

on
su

m
pt

io
n

 [M
H

S0
6

0

10

20

30

40

50

60

70

80
=55)µRun 3 (=88-140)µRun 4 (=165-200)µRun 5 (

2020 Computing Model - CPU
Baseline
Conservative R&D
Aggressive R&D
Sustained budget model
(+10% +20% capacity/year)

LHCC common scenario
=200)µ(Conservative R&D,

ATLAS Preliminary

November 2020A. Reinsvold Hall | Particle Physics Seminar 49

CMS computing during HL-LHC

Material, CMS tracker

• Amount of material in the CMS tracker is one
of the primary reasons for using the KF
algorithm for track building

November 2020A. Reinsvold Hall | Particle Physics Seminar 50

0 0.5 1 1.5 2 2.5 3 3.5 4

0
x/

X

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6 In front of IT sensors

Inside IT tracking volume

Between IT and OT

Inside OT tracking volume

|η|

Phase-1 Tracker�
CMS Simulation�
Preliminary

mkFit performance
• Efficiency: fraction of simulated tracks that are matched to a reconstructed track
• Fake rate: fraction of reconstructed tracks that are not matched to a sim. track
• Duplicate rate: fraction of sim tracks that are matched to >1 reco track

• Simulated tracks are required to be prompt, within acceptance (|η| < 2.5), and
matched to a track seed

• Reconstructed tracks are considered matched to a simulated track if > 75% of
hits are shared, including the seed

• Measured in standalone mkFit configuration (ie, not within CMSSW)
• Measured using simulated TTBar events with PU 50, realistic Phase I CMS

geometry and detector conditions
• Computing performance tested on an Intel SKL-SP, dual socket x 16 cores

November 2020A. Reinsvold Hall | Particle Physics Seminar 51

mkFit track quality

• mkFit finds hits on a comparable number of
layers

• Caveats: showing number of layers rather than
number of hits because mkFit originally could
only pick up one hit /layer

• In the case of overlapping modules, CMSSW
can pick up both hits

• Ongoing developments now to allow this to
happen

November 2020A. Reinsvold Hall | Particle Physics Seminar 52

2- 1- 0 1 2
hTrack

0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

 N
um

be
r o

f L
ay

er
s

CMSSW

mkFit

Coffea processor
• User is provided data frame of columns

they wish to process
• User fills a defined set of accumulators

• Histograms, dictionaries of counts,
appendable arrays, …

• Coffea executor takes care of the rest
• Local machine, dask, spark, parsl (and

condor)

November 2020A. Reinsvold Hall | Particle Physics Seminar 53

Coffea and scientific python
• Coffea fills in missing pieces of the software stack

November 2020A. Reinsvold Hall | Particle Physics Seminar 54

Bigger picture of analysis
• Coffea spans much of the analysis workflow defined by the IRIS-HEP Analysis

systems group

November 2020A. Reinsvold Hall | Particle Physics Seminar 55

